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Figure 6-10. Particle systems
can create effective animated
smoke effects.

Figure 6-11. Any mathemati-
cal equation can be visually plot-
ted. Here a simple equation is
plotted as a parabola.
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Color plate 8 uses a volumetric fog light to project both fog and image
through the upper-right corner of the composition.

Another situation in which a localized atmospheric effect may be neces-
sary is when smoke is present. Because of the density of smoke, even a faint
light passing through it will make the smoke visible. A common technique for
rendering smoke is particle systems, which we discuss in much more detail in
section 7.8. As with volumetric fog lights, the goal is to account for the tiny
particles that float in the air and deflect the light. Like all the techniques dis-
cussed in this section, any parameters you set can be animated. In Figure
6-10, we see two moments in the life of a particle-system smoke effect. In (b)
the smoke has expanded and risen relative to its original configuration in (a).

6.3 Fractals

In the 1970s, a French mathematician named Benoit Mandelbrot began refin-
ing an unusual new branch of mathematics, which has turned out to be
extremely rich in possibilities for computer graphics. He termed this new
mathematics fractal mathematics, because it involves the possibility of writ-
ing mathematical equations for geometries of fractional dimensionality. Nor-
mally, you think of dimensionality in terms of whole numbers: a point in
space is 1-dimensional, a drawing on a piece of paper is 2-dimensional, a
wooden box is 3-dimensional, and so on. In Mandelbrot’s system, it is possi-
ble to think of something that is 1.76-dimensional, for instance, or
2.24-dimensional.

It is common for mathematicians to make visual representations, or
graphs, of their mathematical formulas. To take a simple example, the visual
representation of the equation y = x2 is a parabola (Figure 6-11). This curve
can be plotted by listing several x values, calculating the y value for each x
value, and then drawing a mark at each (x,y) combination.

The images that result when fractal equations are plotted are much more
complex than this simple example, and mathematicians working with fractal
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Figure 6-12. A pattern
generated by plotting an
equation of fractal mathematics.
(Bathsheba L. Grossman, 1985)

mathematics soon discovered that visual representations of their fractal equa-
tions produced some very intricate, unexpected, and beautiful results. Most
interestingly, they found that graphs of fractal equations produce imagery
that captures some of the characteristics of natural phenomena. That is, frac-
tal imagery often has an irregularity and an unpredictability, an intricacy of
detail, and a similarity of detail to overall form reminiscent of forms found in
nature (Figure 6-12).

As fractal mathematics developed, computer graphics researchers began
to develop techniques that took advantage of these characteristics by produc-
ing both two-dimensional pictures and three-dimensional models. Today,
these fractal techniques have become an integral part of all 3D CG systems,
and are used for both modeling and rendering.

One of the most important characteristics of fractals is that at any level of
detail you can see similarities in the forms. The forms at the most minute level
bear a resemblance to the forms at grosser levels, and these in turn look sim-
ilar to forms at even higher levels. This characteristic, called self-similarity,
belongs to many phenomena in nature as well. The large-scale crags and
peaks of a mountain are similar in shape to the smaller abutments that make
up those crags. Individual rocks on the mountainside have a similar “craggi-
ness” to them, but on a much smaller scale. The pebbles that break off from
such rocks have similar forms, and if you examine one of these pebbles with
a magnifying glass, you would find miniature “crags” similar to the cragginess
of the mountain itself.

To see how self-similarity works in a fractal image, take a simple and
common example, called the Koch curve. You start generating this fractal
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Figure 6-13. A Koch curve
exemplifies the two fractal
principles of self-similarity and
recursion.
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Figure 6-14. A fractal image
has, as part of its definition, an
infinite amount of detail. No
matter how much you magnify
an image, you will always see
additional detail.

curve with a simple straight line (Figure 6-13a). Next you break this straight
line into a pattern, which is called the generator (Figure 6-13b). Breaking
each of the four straight lines that make up the generator into yet smaller
versions of the generator pattern yields a new pattern consisting of four
occurrences of the generator (Figure 6-13c¢). Subdividing each straight line of
that pattern into the generator pattern yields the next generation of the curve
(Figure 6-13d). You can repeat this process of subdivision indefinitely, creat-
ing ever more detailed and refined repetitions of the generator pattern.

Notice that each new generation of the Koch curve is defined in terms
of a previous Koch curve. For example, Koch-curve generation number 22
consists of Koch-curve generation number 21 with a generator pattern sub-
stituted for each straight line of number 21. In other words, in order to
create a Koch curve, you first must create a Koch curve: the definition is
self-referential.

This process of defining something in terms of itself is called recursion
and the process is said to be recursive. Because it is self-referential, a recur-
sive process in principle can go on forever. A common example of recursion
in the physical world is what happens when two mirrors are placed face to
face. If you look in the first mirror, you see yourself reflected in the second,
which in turns reflects an image of yourself looking in the first mirror and
being reflected in the second, which in turn reflects an image of yourself in
the second mirror looking at yourself in the first mirror and being reflected
in the second, which is being reflected in the first—and so on.

In a fractal curve there can be an unlimited number of generations—that
is, it contains an unlimited amount of detail, even if you cannot see it. Beyond
a few additional generations, for example, you could not see any more detail
in Figure 6-13d. The image on the page is simply too small for your eye to
pick up such tiny detail. For this practical reason, therefore, you probably
would not attempt to draw too many additional generations. It is important
to understand, however, that by definition these additional generations of the
curve are there, even if you choose not to draw them.

If you imagine magnifying a section of the curve, you can understand
more clearly that no matter how much you magnify a section of a fractal
curve, there will always be, if you choose to draw it, more detail to see. Imag-
ine that you place a magnifying-glass over a section of a Koch curve (Figure
6-14a). Notice that even at a magnified level the same amount of detail is
available (Figure 6-14b). If you zoom in yet again, as indicated by the mag-
nifying-glass icon, the resultant image again has a full level of detail (Figure
6-14c). The definition of the original curve includes all of these levels of
detail—that is, all of these generations.

Some software packages offer fractal procedures that allow you to directly
model a surface. If you now imagine trying to model the mountain described



at the beginning of this section by using the nonfractal modeling techniques
discussed earlier in Chapter 2, you can see that none of those techniques
allows you very successfully to simulate the infinitely craggy quality of the
mountain. First, complexity and irregularity make the forms involved tre-
mendously difficult to model by positioning vertices and control points. Sec-
ond, trying to model these forms in enough detail to make them look con-
vincing both from the altitude of an airplane and from the height of a person
walking on the surface of the mountain is impractical.

Moreover, if, through some tremendous exercise of saintly patience, you
manage to create such an exceedingly detailed model, you will produce a
wasteful rendering situation. Since all of the details of this model have to be
dealt with, the rendering process will spend a lot of time rendering detail that
is not visible. From the height of the airplane, the renderer will render even
the tiniest details, even those details too small to be seen in the final picture.

Fractal models solve both the theoretical problem of whether it is pos-
sible to create such a complex model, and the practical problem of how to
render it once you have created it. On the theoretical side, fractals are by
definition very irregularly shaped and contain an unlimited amount of
detail, so a fractal technique can, in fact, solve the problem of how to model
a mountain. On the practical side, fractal techniques offer control over how
many generations of a pattern are going to be created. Depending on the
level of magnification needed, the software creates more or fewer genera-
tions, in the same way that you increase or decrease the number of genera-
tions—that is, the level of detail—in the Koch curve. The most common
technique for applying fractal mathematics to three-dimensional modeling
is very similar to the approach illustrated by the Koch curve. This process
is called recursive subdivision.

Imagine that you have a simple rectangular patch (Figure 6-15a). If you
subdivide this patch into four smaller subpatches, and then displace the cor-
ners of each patch some irregular amount, you produce the model in Figure
6-15b. If you then subdivide each of these subpatches into four smaller
patches, with the corners irregularly displaced, you produce a model with
more displacement (Figure 6-15c¢). By repeating this process many times, you
can model a very irregular, terrainlike surface (Figure 6-15d). Further,
depending on how much detail you need to see on the surface from a given
point of view, using this modeling procedure the modeling software can pro-
duce a higher or a lower generation of the fractal geometry. A lower genera-
tion is suitable for viewing the terrain from a distance. A higher generation is
suitable for a close-up view.

More commonly, fractal mathematics is used in off-the-shelf software
to generate texture images that are, in turn, used for a wide variety of ren-
dering applications. Most software packages offer a range of fractal texture
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Figure 6-1 5.(2\)fractal terrain
model can be developed by
recursively subdividing and
displacing a patch.
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Figure 6-16. Fractal textures
are especially useful, both in mod-
eling and in rendering. (Off the
Map, © 1991 Sylvain Moreau.)

procedures, each adjusted to accomplish a specific purpose. One might make
a cloudlike pattern, another a stony-surface pattern, and so on.

A fractal texture might be used for color texture mapping to create an
irregular pattern of color. It can also be used for bump texture mapping to
create an irregular pattern of bumps on a surface. In color plate 10, the tex-
ture of the sand was created with a fractal bump map. Fractal bump mapping
can also be useful in conjunction with a fractally-generated displacement
map (section 5.7). With this approach, the displacement map creates the
large-scale geometry changes, while the bump map (section 3.8) creates the
appearance of small-scale bumps.

Applied as a transparency map, a fractal texture can introduce a random
irregularity into an atmospheric fog (section 6.2), or can cause the rendering
of particles to look smoky (section 7.8). When attempting these effects, you
most commonly use fractal procedures to generate solid textures (section
3.9), thereby creating a three-dimensional volume of transparency that varies
as you move through the space of the fog or smoke.

The image in Figure 6-16 uses fractal texture mapping in several ways.
The material partially covering the woman’s face is actually a flat surface with
two fractal textures applied—one as a bump map and the other as a transpar-
ency map.

6.4 Lighting Subtleties

We have discussed lighting in several other sections of this book. Section 3.3
introduced the basic concepts and techniques of lighting, and in section 6.2
we discussed the use of volumetric fog lights to render smoke or haze within



