
fine-tuning the deformations of a skinned surface on your character model.
As we discuss in sections 4.9 and 7.13, skinning surfaces onto an inverse
kinematic skeleton causes the IK skeleton to control the deformations of the
surfaces. If the deformations that result aren’t quite satisfactory, one possible
solution is to make the position of an IK effector the driver, and the positions
of several surface points the driven. With such a driven key defined, you
could keyframe the IK effector of your character, and then keyframe the slider
bar of your driven key to adjust the deformation of the surface to suit you.
	 Expressions and driven keys provide powerful tools for producing anima-
tions that might otherwise be difficult to create. Still, the capabilities of these
techniques are quite simple compared to those of a full-blown programming
language. To approach that level of programming power, you must work with
a related technique called procedural modeling and animation, discussed in
section 5.4.

7.6 �Motion Dynamics: Principles,
Rigid Bodies

In certain situations the movement of an object, such as a ball falling from a
height and bouncing on a surface, can be predicted very precisely. Physicists
have studied this sort of phenomenon for a long time and have developed
very accurate mathematical formulae to describe what happens in this situ-
ation. Knowing the effect of gravity and various properties of the ball and of
the surface, they can calculate, using the laws of physics, how quickly the
ball will fall, as well as how high and how often it will bounce.
	 This sort of mathematically precise and detailed study of the motion of
objects is called motion dynamics and can be of great use to animators. The
ball dropping straight down and bouncing off a flat surface is not very diffi-
cult to animate using standard keyframing techniques, but a more complex
situation, such as a box being dropped and bouncing down a stairway (Figure
7-38), is very difficult to animate in a naturalistic way using keyframing. To
estimate realistically how far the box bounces with each bounce, how much

	 7 . 6 M O T I O N D Y N A M I C S : P R I N C I P L E S , R I G I D B O D I E S 305

CloseHand

Figure 7-37. A single driven
key can control a more complex
set of actions, such as the
closing of a hand.

Figure 4.3.1

Figure 7-38. The motion of
some objects can be calculated
precisely according to the laws
of physics.

and in what directions the box rotates as it flies through the air, which edge
or corner of the box strikes the surface of the stairs first, and so on, is a very
complicated piece of animation. The physical laws of motion dynamics, how-
ever, are precise enough for you to calculate the motion of the box.
	 3D animation packages include this sort of motion-dynamics capability
and provide user interfaces that make the technical complexity of the under-
lying calculations transparent. Typically you use a mouse device to open a
menu and make several selections. These selections define the various
parameters that control the motion of the object to be animated. Once you
have defined these parameters, you make a selection that instructs the sys-
tem to perform the calculations and play back the resulting animation on the
screen. This result is called a simulation, because it simulates, or mimics,
the behavior of objects in a real-world situation behaving under the influ-
ence of real-world physical laws.
	 Motion dynamics calculations can be applied to many kinds of animation
problems, as we will see later in this chapter. In this section we present the
basic principles common to all motion dynamics applications, and examine
their simplest application: the movement of rigid bodies, nondeformable
objects whose movement is calculated by motion dynamics. Figure 7-39 is an
example of the power of motion dynamics as applied to rigid bodies. In this
sequence of animation frames, the first frame shows a collection of books and
other objects. In the middle frame, the vase on the highest shelf has fallen and
hit the pile of books, causing them to fall in turn. In the last frame, nearly all
the objects have fallen to the floor. One hundred percent of this animation was
calculated as a motion dynamics simulation of rigid bodies. In subsequent
sections we will discuss motion dynamics as applied to soft (deformable)
bodies (section 7.7), to particles (section 7.8), and to cloth (section 7.9).

PHYSICAL PROPERTIES
In setting up a simulation you first define the physical properties of the
object to be animated. That is, the motion-dynamics system must know cer-
tain characteristics of the object in order to calculate the simulated movement
of the object. For example, a ball made of solid iron bounces much differently
than does a ball made of balsa wood.
	 In physics—and in motion dynamics—one of the most basic physical

306	 A D V A N C E D A N I M A T I O N

Figure 7-39. Motion dynamics
applied to rigid bodies can
produce an animation that
would be quite difficult to do
with keyframing. (© 2001 Sophia
Rotchko.)

properties of an object is mass. Mass is related to, but not quite the same as,
weight. That is, the weight of an object is the result of gravity pulling down
on the massiveness of the object. On Earth, gravity is effectively the same
everywhere, so mass and weight have a direct, one-to-one correspondence.
However, since weight is linked to gravity, the weight of an object can
change—for example, if the object were in outer space—although the mass
of the object remains the same wherever the object is. An object with a large
mass is very difficult to start moving and very difficult to stop once it begins
moving. This is why astronauts approach docking with a space station very
slowly. Even though both the space vessel and the space station are weight-
less, they are extremely massive and could cause great damage to each other
if moving too fast when they make contact.
	 This same property of mass directly affects how an object moves in a
motion-dynamic simulation. For example, if you roll a massive ball down a
ramp and onto a level surface, the ball tends to keep rolling for a long time
because the massiveness overcomes the forces that otherwise would make the
object stop (Figure 7-40a). If you roll a less massive ball down the same ramp,
it tends to stop much more quickly on the flat surface (Figure 7-40b).
	 What makes the one ball more massive than the other is not merely the size
of the objects but also the density of the materials from which they are made.
A balsa-wood ball is less massive than an iron ball because balsa wood is less
dense than iron. A solid clay ball of the same size is more dense and more
massive than a balsa-wood ball, but less dense and less massive than an iron
ball.
	 Size does play a role, however, in determining mass, which is a function
of both the density and the size (more exactly, the volume) of an object. A
small iron ball (Figure 7-40c), even though it has the same density as a larger
iron ball (Figure 7-40a), has a smaller mass because it has a smaller volume.
Consequently, the little, less massive ball does not roll as far as the larger,
more massive ball (Figure 7-40b).
	 Since the mass of an object depends on both volume and density, most
people cannot readily estimate it. Consequently, some systems allow you to
define mass indirectly by specifying density. By thinking in terms of material
(iron, wood, clay, etc.) you can readily give the system a density parameter
value—larger numbers for more dense materials, smaller numbers for less
dense materials. The software then automatically calculates the volume of the
object and then, from the combination of volume and density, the mass.
	 The density of an object also is important to consider when simulating
objects lighter than air. A gas-filled balloon, for example, rises into the air
because the gas inside the balloon is of a very, very low density. This causes
the total mass of the balloon to be so little that gravity will not even keep it
on the ground.

	 7 . 6 M O T I O N D Y N A M I C S : P R I N C I P L E S , R I G I D B O D I E S 307

Figure 4.3.2

Figure 7-40. The mass of an
object plays a key role in how
the object behaves as it moves.
Mass is a function of both the
density of the material and the
size of the object.

(a)

(b)

(c)

	 Another important physical property of objects, called elasticity, reflects
the way objects bounce. Imagine that two balls have exactly the same mass,
but that when you drop these balls, one ball bounces much higher than the
other one does (Figure 7-41a and b). A solid rubber ball, for example, tends
to bounce much higher than a solid plastic ball—even though, as in this
example, the masses of the balls happen to be exactly the same—and a glass
marble dropped on a concrete floor bounces much higher than you might
expect. Objects that have a high degree of elasticity, such as the solid rubber
ball and the marble, tend to bounce a lot. Objects with lower elasticity bounce
less.
	 The term “elasticity” can be a bit misleading, however. In day-to-day
usage, the word describes objects easily stretched or deformed. A rubber
band and a soft rubber ball that you can squeeze between your fingers are
elastic in this sense. As it is used in motion dynamics, however, “elastic”
means something different. A glass marble is extremely elastic because it
bounces very high, even though it is very hard and does not deform between
your fingers at all. In motion dynamics, elasticity refers to the amount of
energy retained or lost when an object makes contact with something else. If
an object is very elastic, very little energy is lost and the object bounces a lot.
If the object is very inelastic, a great deal of energy is lost and the object
therefore bounces only slightly.
	 You must also define the friction created by an object. Since friction is a
function of how smooth or rough a surface is, this property is sometimes
referred to as roughness. There are two distinct types of friction. The first is
static friction, which prevents stationary objects from sliding down inclined
planes. It is called “static” because it refers to nonmoving, or static, objects.
If, for instance, the static friction of a box placed on a ramp is very great, the
box will not slide at all (Figure 7-42a). If you decrease the static friction, the
box will begin to slide (Figure 7-42b).
	 The second type of friction, kinetic friction, causes moving, or kinetic,
objects to come to a stop. For instance, suppose you place two boxes identi-
cal in mass on two ramps identical in slope. What causes one box to stop
sliding after only a short time is the kinetic friction, or roughness, of the
surface of the box (Figure 7-43b). If the other box is made of some very
slickly polished material and has very low kinetic friction, it will continue
sliding for a longer distance (Figure 7-43a).
	 Static friction and kinetic friction function independently and therefore
can be adjusted independently in most systems. For example, if you set the
static friction of a ball rolling on a surface to zero, the ball will slide, rather
than roll, along the surface. At the same time, you can adjust the kinetic fric-
tion of the ball up or down. If you increase the kinetic friction, the ball will
slide (because the static friction is set to zero) and stop quickly (because the

308	 A D V A N C E D A N I M A T I O N

Figure 4.3.3

Figure 7-41. The elasticity of
an object is a measure of how
much the object bounces when
it hits a surface.

	 (a)	 (b)

(a)

(b)

Figure 4.3.4

Figure 7-42. The static
friction of an object is a
measure of how readily the
object, when stationary, will
start to move after being
subjected to some force.

(a)

(b)

Figure 4.3.5

Figure 7-43. The kinetic
friction of an object is a
measure of how easily the
object, when moving, can be
stopped by some resisting force.

kinetic friction is high). If you decrease the kinetic friction, the ball will slide
(because the static friction is still zero) and come to a stop slowly (because
the kinetic friction is low).

FORCES AND FIELDS
So far, we have discussed a number of physical properties important for a
motion-dynamics calculation. In order to complete the definition of motion
dynamics for an object, however, you also need to describe the forces, some-
times also called fields, that act upon the object. What causes the object to
move in the first place?
	 The most common force that motion dynamics takes into account is the
force of gravity. Except in very rare circumstances, gravity affects all objects.
Even if no other forces cause an object to move, gravity will keep it on the
ground. Technically speaking, gravity is the attraction between two objects,
caused by the masses of the objects and the distance between them. A ball
falls to Earth because the mass of Earth is so much greater than the mass of
the ball that the ball is attracted to Earth. This is why a ball in Antarctica will
fall “upward” toward the Earth.
	 From the point of view of most animation, however, you can think of
gravity in simpler terms—as a force pulling all objects downward. Conse-
quently, most motion-dynamics systems define gravity as a simple force that
pulls all objects downward at a specific rate in the negative Y direction. This
force usually exists by default (just as it does on Earth) and affects all objects
equally and automatically. Thus, even if you define no other forces and define
no other animation, a ball that starts out suspended in the air at frame 1 of a
simulation immediately begins falling in frame 2 because of gravity.
	 The fact that gravity causes objects to fall at a specific rate affects the
dimensions you use when modeling objects in a motion-dynamics system.
Because the speed at which an object falls is measured in terms of the distance
the object travels per second, the measurements of distance you use in the
modeling process must be consistent with the measurements of distance used
by the motion-dynamics calculations for gravity. If the software you use mea-
sures gravity in feet per second, then the units of measurement for your
models must also be feet. If gravity is measured in meters per second, then
your models must be modeled in metric units. Normally, a motion-dynamics
software package sets up default units of measurement, so that the units are
consistent in both the modeling and simulation sections of the software.
However, if you change the units of measurement, the gravitational force of
the motion-dynamics system will not pull objects downward at a physically
accurate rate.
	 Many animators are less interested in physically accurate simulations than
in visually interesting animation, and motion dynamics can be used to good

	 7 . 6 M O T I O N D Y N A M I C S : P R I N C I P L E S , R I G I D B O D I E S 309

effect for this. If, however, you do want to create a physically accurate simu-
lation, you must use physically accurate numbers for gravity. On Earth, grav-
ity causes falling objects to accelerate—that is, gain speed—at a rate of 9.8
meters per second, which is equivalent to thirty-two feet per second.
	 In addition to gravity, another force that many systems allow you to define
is wind, which can be very useful, for example, in animating a curtain blow-
ing in a breeze, or the branches of a tree bending slightly in the wind. These
are subtle kinds of movement, difficult to model convincingly with keyfram-
ing techniques. A wind force is usually defined as a vector having a location,
a direction, and a strength. In Figure 7-44, the arrow pointing to the right
represents the wind force. The arrow pointing downward is the default grav-
ity force. The curtain model has been defined to have a certain mass. When
the wind force hits the curtain, it tends to push the curtain to the right. At the
same time, however, the gravity force tends to pull the curtain straight down.
Both of these tendencies are affected by the mass of the curtain itself. The
result of these forces pushing and pulling against each other is that the curtain
rises and falls and flaps “in the breeze.”
	 A wind force is defined in most systems to affect an entire scene equally
from a given direction. For example, several curtains in a scene, each located
some distance from the others, are affected to the same degree by the wind.
	 A variation on the wind concept is a fan force. Unlike wind, it is possible
to limit both the distance over which a fan force will carry and the radial area
that it will affect. In Figure 7-45, the fan force is represented by the cylindri-
cal form on the far left. The arrow emanating from the center of that form and
traveling to the right represents the distance over which the force of the fan
will carry. At the base of the arrow—that is, at the cylindrical fan icon itself—
the force of the fan is strongest. This is why the string close to the base of the
arrow is being blown quite a bit. As the force of the fan travels down the
arrow, the strength of that force decreases, which is why the next string is not
being blown as much as the first. Beyond the tip of the arrow, the force of the
fan dies out completely and the string does not move at all.
	 The force of the fan not only fades as it travels in the direction of the
arrow; it also fades as it moves radially away from the center of the fan. The
dotted lines emanating from the fan icon demarcate the radial range of effec-
tiveness. The string at the top left, which is completely outside the radial
range of the fan, is not moving at all. The string directly to the right lies just
inside the radial limit and therefore is being affected slightly. Notice, however,
that this string is not being affected as much as the string directly below it,
which, even though it is at the same horizontal distance from the fan, is closer
to the radial center of the force field.
	 Turbulence, another force offered by most packages, pushes objects in ran-
dom directions. The amount of randomness is usually controlled by several

310	 A D V A N C E D A N I M A T I O N

Figure 4.3.7

Figure 4-45. Unlike wind,
which is omnipresent, a fan
force has a limited range.

Figure 4.3.6

G

W

Figure 7-44. Motion-dynamics
systems require you to define
the forces, such as gravity and
wind, that act on objects.

noise parameters, while a magnitude parameter controls how strong the
turbulence is. You can also set an attenuation parameter controlling how
quickly the force fades with distance. Being at the center of the turbulence
subjects you to much more force than being farther away, at its edge. And if
you are far enough away, the turbulence will not affect you at all.
	 Many packages also offer a vortex force, which moves objects in a spiral-
ing whirlwind pattern. As with turbulence, you can control the magnitude
and attenuation of the force. You can also control the direction of spin.
	 In setting up a motion dynamics simulation, you typically define several
forces, some of which, such as gravity, might affect all objects, while others
might affect only certain objects. To avoid unnecessary calculations, you link
each force to specific objects. For example, in Figure 7-46, the papers blown
about on the left side of the frames are affected by three forces—a vortex force
spinning them in a rising circular pattern, a turbulence force which adds
randomness to their motion, and a gravity force which pulls them back to
earth. At a later moment in the animation, boxes falling out of the back of the
truck are affected by the same gravity force, but are linked to neither the
vortex nor turbulence forces (Figure 7-50).
	 A final force that can be very important in setting up a motion-dynamics
simulation is the acceleration an object has as the result of some keyframed
action: keyframed acceleration. Acceleration is a measure of how fast the
speed of an object changes, and the most basic way of giving an object some
sort of speed or movement in a three-dimensional animation system is key-
framing (described in Chapter 4).
	 All software packages allow you to combine keyframed animation move-
ments with motion-dynamic simulation. Thus, you might keyframe an anima-
tion of a ball translating from one position to another over ten frames (Figure
7-47). This operation involves the standard keyframing techniques of setting a
keyframe for the ball as it appears in frame 1, then setting another keyframe
for the ball as it appears in frame 10. Having defined the keyframed animation
from frame 1 to frame 10, you then direct the simulation software to take over
the calculations from frame 11 through frame 40. When the simulation takes
over, two forces are at work: the default gravity force, and the acceleration that

	 7 . 6 M O T I O N D Y N A M I C S : P R I N C I P L E S , R I G I D B O D I E S 311

Figure 7-46. Several forces
can be applied to each object.
Here, vortex, turbulence, and
gravity forces are applied to the
swirling papers.

the ball has as a result of being translated from the position at frame 1 to the
position at frame 10. The combination of this keyframed acceleration and grav-
ity causes the ball to continue rising for a while and then to fall.

COLLISIONS
One of the areas in which motion dynamics can be most useful is in simulat-
ing collisions. The reason the animation of a box falling down a flight of
steps (see Figure 7-38) is so complex, for example, is that the box collides
with the steps and bounces off them when it does. It is the precise calculation
of these collisions, called collision detection, that makes a simulation of this
animation so effective.
	 The calculation of collisions, however, can be extremely time-consuming
for a computer system, and most motion-dynamics systems therefore allow
you to elect whether or not to calculate collisions for a given object. If you
know that an object, such as an isolated curtain (see Figure 7-44) won’t hit
anything in a particular animation sequence, you can turn off collision detec-
tion for that object.
	 If you want to calculate collisions for your model, however, most systems
offer several options, all intended to minimize the amount of calculation nec-
essary for a successful simulation. The first option is to define which other
objects in the scene might be obstacles—that is, which objects the animated
object might collide with. When the software does the collision-detection
calculations, it will consider only these defined obstacles.
	 For example, suppose you add a lamppost to the scene in which the box
falls down the steps (Figure 7-48). Given the position of the lamppost behind
the steps, the box will never collide with it, so you can eliminate it from the
list of obstacles that the motion-dynamics software needs to consider in col-
lision-detection calculations. Only the steps, floor, and wall need be consid-
ered obstacles.

312	 A D V A N C E D A N I M A T I O N

Figure 4.3.8

f10

f1

f40

simulated keyframed

G

A

Figure 7-47. Some systems
allow you to combine standard
keyframed motion with motion-
dynamics simulation. Here, the
keyframed acceleration of an
object is calculated into the
motion dynamics.

	 Another area in which most systems offer collision-detection options is in
the shape of the objects involved. The collision calculations for a complex
shape—a telephone, for example—are more complicated than the calcula-
tions for a simple shape, such as a box. Consequently, many systems allow you
to use a simpler shape as a stand-in for the purposes of collision calculations.
Assuming that a falling telephone is shaped like a simple box, for example,
greatly speeds up the collision-detection calculations, although you still see
the actual telephone falling. In many animations, the accuracy of the collisions
calculations does not need to be exact in order to be visually convincing.
	 Among the number of simplifying shapes that motion-dynamics sys-
tems permit is the bounding box, or the smallest rectangular box into
which an object will fit (Figure 7-49a). If you use the bounding box of the
telephone for collision-detection calculations, the resulting motion is simi-
lar to what it would have been if you had used the actual shape of the
telephone, since the shape of the bounding box and the shape of the tele-
phone are similar. Likewise, some objects can be conveniently and fairly
accurately approximated with a bounding sphere, or the smallest sphere
into which they will fit (Figure 7-49b).
	 Bounding boxes and bounding spheres may be used to simplify either the
colliding object itself or the obstacles with which the object will come into
contact. Sometimes it is possible to use a bounding plane as a simplification
technique for obstacles. A flat surface that extends infinitely in all directions,
a bounding plane could successfully approximate a bumpy surface, for exam-
ple (Figure 7-49c).
	 To control the precision with which your software performs collision
detection calculations, you can adjust a collision tolerance parameter. The
smaller this number, the more precise the collision calculations. More precise
calculations, of course, slow down the software.
	 Obstacles are sometimes stationary, as they are in the staircase example of
Figure 7-48. Sometimes, however, you want an animated obstacle. In Figure
7-50, the animated truck bed has been defined as an obstacle for each of the
boxes. As the truck bed rises, gravity pulls the boxes down, colliding them
with the rising bed, and eventually sliding them off the back.

	 7 . 6 M O T I O N D Y N A M I C S : P R I N C I P L E S , R I G I D B O D I E S 313

Figure 4.3.9

Figure 7-48. Only those
objects that the falling box
might hit need to be defined as
obstacles for that box. This
reduces the calculations
necessary for collision detection.

Figure 4.3.10

Figure 7-49. Bounding boxes,
bounding spheres, and bounding
planesÑall represented by
broken lines in this
illustrationÑcan be used to
simplify collision-detection
calculations.

(a)

(b)

(c)

	 In some motion dynamics simulations, there may be a great many objects
colliding with each other, as in the dump truck animation of Figure 7-50. Not
only does each of the boxes collide with the truck bed and the ground, but
each box can collide with every other box. Collision detection calculations for
such a scene can become quite complex and time-consuming, even when the
objects are limited, as here, to nondeformable rigid bodies.
	 In an effort to minimize the complexity of these calculations, most soft-
ware packages offer a distinction between two types of motion dynamics
objects. A passive body is one that contributes to the motion dynamics cal-
culations, but itself is not moved by them. Examples of this are the truck bed
and ground of Figure 7-50. As passive bodies, both of these objects are obsta-
cles and are therefore contributing significantly to the simulation calcula-
tions. Neither of them is affected by those calculations, however. The ground
object is not moved at all when the boxes bang into it. The truck bed is
moving, but all of its movement is a result of standard keyframed animation,
not of motion dynamics calculations. By contrast, an active body is an object
that not only contributes to the simulation calculations, but itself can be
moved by them. In our dump truck example, each of the boxes is an active
body. All the movement of each box is purely the result of the motion dynam-
ics calculations. Also, and very importantly, each active body is automatically
an obstacle to all other active bodies. Thus, each box can collide with any
other box.

ALGORITHMS AND PLAYBACK ISSUES
Motion dynamics algorithms are based on precisely defined principles of
physics and mathematics. These have important consequences for the user of
motion dynamics software, and it is important to understand several aspects
of the underlying science of motion dynamics. Whereas in the real world time
is continuous, so that there is no break between one instant and another, in
motion dynamics time is treated discretely. That is, time is broken up into a
fixed number of measurable increments—for example, thirty increments per
second, or one hundred increments per second. These increments are called
time steps. The smaller the time steps, the more closely they approximate the
continuous nature of time, and therefore the more accurately they simulate
an animated scene. However, smaller time steps also mean more calculations.

314	 A D V A N C E D A N I M A T I O N

Figure 7-50. Obstacles can be
animated with keyframing. Here,
the passive-body truck bed
rotates upward, causing the
active-body boxes to tumble
out.

Consequently, you can define the size of the time steps, giving you the option
of trading off accuracy of simulation for speed of calculation if necessary.
	 The size of the time step becomes especially critical when you have objects
that are moving extremely fast and should collide with an obstacle (Figure
7-51). If the time step is too large, the object might be on the left side of the
obstacle at time step n, and have passed right through it as of time step n + 1.
Not only does this look incorrect, of course, but it can also cause the software
to freeze, since interpenetrating objects are impossible according to the phys-
ics of motion dynamics. The solution to this situation is to decrease the size
of the time step until the calculations succeed. In extreme situations, the time
step may have to be decreased so much that the calculations become imprac-
tically slow. In this case, you may have to redesign your animation to avoid
the problem in the first place.
	 Because of the mathematics of motion-dynamics calculations, two simula-
tions of a given scene that use different time steps will not produce the same
motions. The path of an object can differ substantially when calculated under
two different time steps. For this reason you may not find it useful to define a
larger time step to sketch out a preliminary version of an animation, with the
intention of switching to a smaller time step for the final animation.
	 Another important issue in motion dynamics algorithms is time inter­
dependence, the dependence of every moment on the preceding moment.
What an object will do in the next instant depends on what it is doing now.
Imagine two situations, as illustrated in Figures 7-52 and 7-53. In both situa-
tions the large ball is in exactly the same location at frame 100—just in front of
the character’s face. In Figure 7-52, the ball is also moving forward very quickly
toward the character as of frame 100. In 7-53, although it is in the same loca-
tion, the ball is stationary at frame 100, hovering in the air. The subsequent
actions of the two balls will therefore be very different. The ball that had been
moving quickly toward the character in Figure 7-52 will continue to do so
because of its momentum—the tendency of a moving object to keep moving
unless something stops it—and will crash into the character’s face in frame
101. By contrast, the ball that had been hovering in mid-air in Figure 7-53 has
no such momentum, and will begin dropping straight down at frame 101.
	 The dependence of one simulated moment on the previous simulated

	 7 . 6 M O T I O N D Y N A M I C S : P R I N C I P L E S , R I G I D B O D I E S 315

time n+1time n

Figure 7-51. If the time step
is too large, a fast-moving object
might pass through an obstacle
in the interval between one time
step and the next.

f 100 f101

f 100 f101

Figure 7-52. An objectÕs
momentum at one moment
contributes to how it behaves in
the next.

f 100 f101

f 100 f101

Figure 7-53. The movement
of an object at any one moment
is dependent upon what it was
doing the previous moment.

moment has important implications for playback of a motion dynamics sim-
ulation. In order for motion dynamics software to know the positions of
objects at frame 101, it must know where they were, and how fast and in
what direction they were moving at frame 100. But in order to know that for
frame 100, it must first know the same information for frame 99. In short, in
order to know the positions of simulated objects at any given frame, the
motion dynamics software must go all the way back to frame 1, and recalcu-
late the simulation from the beginning each time.
	 Different software vendors offer different ways around this problem, as we
will see in a moment, but the implications are significant in any motion
dynamics software. One implication is that you cannot drag your frame
counter through your timeline to view a given frame. If you do so, you will
skip some frames as you drag, and the calculations will be inaccurate. Also,
when playing back your animation, you cannot force the playback to syn-
chronize to a specific playback rate—for example, video or film. If you do,
the playback will skip some frames, and therefore cause inaccurate simula-
tion calculations. And finally, when rendering your frames, you cannot pick
a frame in the middle of your sequence and start rendering there. You must
always start at frame 1 and render every frame in sequence from there.
	 Clearly, these restrictions are extremely inconvenient for the animator. As
a consequence, motion dynamics packages offer several solutions. One solu-
tion is to create temporary cache data in RAM. The word cache means to hide
or store, so cache data is data that has been stored for future use. When you
turn on this option, your software will take longer to calculate the simulations
the first time through, because it will also be storing this information in RAM.
Once the simulations have been calculated, however, the cache data allows
you to view your simulation as if it were a normal animation—that is, you
can scrub through the timeline, and you can play back the animation, synch-
ing it to a particular playback rate. If you make any changes to your simula-
tion setup, however, your must delete the old cache data and calculate new
data. For example, if you reposition one of your objects, or change the mass
of another object, you must delete the old cache data and recreate it.
	 A related issue is that, since cached data is stored in RAM, it is not saved
permanently with your files on your hard drive. This means that when you
return to work on your file the next day, the cache data will have been lost
and will have to be recalculated. It also means that if you try to render your
frames in several stages—for example, starting at frame 1, then restarting the
next day at frame 600—you will have the same problem. To address this,
most packages allow you to create a permanent cache, sometimes also called,
rather picturesquely, a baked simulation. In this case, cache data is written
to the hard drive and saved with your scene file.
	 Permanent cache data stores the positions of every object at every frame

316	 A D V A N C E D A N I M A T I O N

as raw data—that is, as a keyframe at every frame. This can result in data files
that are quite large. There are several advantages to creating such permanent
cache data, however. Once you have created permanent cache data, you can,
if you choose, delete all your motion dynamics elements—forces, physical
properties, and so on—because the permanent cache data has stored the
positions of every object at every frame. Very importantly, you can also view
the raw data curves in your parameter curve editor (section 4.4), where you
can thin the curves and then edit them as you would any other parameter
curve.
	 All the motion-dynamics techniques discussed in this section are very
powerful and can yield stunningly realistic simulations of an event. Some-
times, however, the most effective thing you can do is to combine the more
standard, keyframe-based animation techniques with these sophisticated
motion-dynamics calculations. For example, the human figure in Figure 5-13
was animated using standard keyframing and hierarchical animation. The
bowling balls, on the other hand, were animated using motion dynamics to
achieve a high degree of realism as the balls flew through the air and bounced
on the ground about the feet of the character.

7.7 Soft-Body Dynamics
In the previous section we discussed the principles and concepts common to
all motion dynamics, and focused on how they are applied to rigid bodies,
objects whose shapes do not deform. When motion dynamics calculations
are applied to an object whose shape can deform, such an object is called a
soft body. For a soft body, as for a rigid body, you define physical properties
such as mass and elasticity. You also define forces such as gravity or wind, as
well as friction and collision obstacles. In addition to all these parameters,
there are also several other important issues related specifically to the deform-
ability of soft bodies. We focus on these issues in this section.
	 Soft-body dynamics can be used for many applications. One example is a
soft rubber beach ball falling under the force of gravity, colliding with a sur-
face, and deforming as it bounces (Figure 7-54). Another example is a flag
waving in the wind, with the wind and gravity causing the fabric of the flag
to ripple in the breeze. A third example of soft body dynamics might be a
modeled lock of hair on a CG character’s head, with the up and down move-
ment of his walk causing the lock of hair to bounce up and down.
	 We saw in section 7.6 that when a rigid body moves in a simulation, the
motion dynamics calculations act upon the object as a whole. If a cube is
bouncing down a stairway, as it is in Figure 7-38, the motion of the entire
cube as a unit is simulated, and the entire cube as a unit bounces off the stairs.

	 7 . 7 S O F T - B O D Y D Y N A M I C S 317

(a)

(b)

Figure 7-54. A soft body is a
deformable object moving under
motion dynamics.

